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mesenchymal stem cell secretome
in ischaemic stroke
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Abstract

Mesenchymal stem cells (MSCs) hold great potential as a regenerative therapy for stroke, leading to increased repair and

functional recovery in animal models of cerebral ischaemia. While it was initially hypothesised that cell replacement was

an important mechanism of action of MSCs, focus has shifted to their paracrine actions or the so called ‘‘bystander’’

effect. MSCs secrete a wide array of growth factors, chemokines, cytokines and extracellular vesicles, commonly

referred to as the MSC secretome. There is evidence suggesting the MSC secretome can promote repair through a

number of mechanisms including preventing cell apoptosis, modulating the inflammatory response and promoting

endogenous repair mechanisms such as angiogenesis and neurogenesis. In this review, we will discuss the in vitro

approaches currently being employed to drive the MSC secretome towards a more anti-inflammatory and regenerative

phenotype. We will then examine the role of the secretome in promoting repair and improving recovery in preclinical

models of cerebral ischaemia.
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Introduction

Stroke is a major global health problem with limited
treatment options which leads to around 6.7 million
deaths annually.1 For the 33 million people living
with stroke, a significant proportion have some disabil-
ity.2 Current treatments for acute ischaemic stroke are
based on reperfusion through thrombolysis or endovas-
cular therapy. Both approaches are very effective and
have led to significant re-organisation of acute stroke
services to allow greater access to these treatments.
However, due to the narrow therapeutic window for
administration of tPA (< 4.5 h of symptom onset),
only 5% of patients in the UK receive thrombolysis3

and an estimated 10% would be eligible for endovas-
cular clot retrieval assuming national coverage,4 which
is still not the case. Therefore, there is much interest in
developing regenerative therapies to alleviate the dis-
ability caused by stroke.

One promising candidate being widely investigated
as a cell therapy for ischaemic stroke is mesenchymal
stem/stromal cells (MSCs), multipotent cells first

described by Friedenstein and colleagues in the 1960s
and 1970s.5 While initially found in bone marrow,
MSCs have since been isolated from most postnatal
organs6 including adipose tissue,7 dental pulp,8 lungs,
liver, spleen and brain.9,10 MSCs are also present in
foetal tissues such as placenta, umbilical cord11 and
Wharton’s jelly.12 The International Society for
Cellular Therapy (ISCT) has defined the minimum
criteria for MSCs as: adherence to tissue culture plastic;
multipotency as demonstrated by in vitro differenti-
ation into osteoclasts, adipocytes and chondroblasts;
expression of surface markers CD73, CD90 and
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CD105; and negative for CD34, CD45, CD14 or
CD11b, C79a or CD19 and HLA-DR.13

A large number of clinical trials (794 as of January
2018) have been conducted or are ongoing to investi-
gate MSCs as a potential therapy for a wide range of
diseases including graft versus host disease, haemato-
logical malignancies, diabetes, and neurological dis-
eases such as Alzheimer’s disease and amyotrophic
lateral sclerosis.14,15 More specifically, a number of
phase I/II clinical trials have suggested MSCs are a
safe and feasible therapy for stroke.16–21 MSCs are
immune evasive22 and less immunogenic than many
other cell types due to low expression of majority histo-
compatibility complex class I molecules.23 In support of
this, a meta-analysis conducted by Lalu et al.14 found
no association between acute infusional toxicity and
MSC treatment overall and no adverse events in the
13 studies that used allogeneic cells. Thus, allogeneic
transplantation without immunosuppressive therapy
appears to be safe which has numerous advantages
over autologous therapies including decreased cost
and time to administration.23

Numerous preclinical studies have demonstrated
that treatment with stem cells, including MSCs, pro-
motes functional recovery in rodent models of cerebral
ischaemia. Although it was thought initially that the
principle mechanism of therapeutic action of stem
cells was direct replacement of dead and injured cells,
this has been largely disregarded as very few cells reach
the site of injury, engraft and survive long term.24,25

Following administration by intravenous (IV) or
intra-arterial (IA) injection, the vast majority of
MSCs become entrapped in the lungs within 48 h.26,27

Li et al.28 reported that around 4% of cells were present
in the ischaemic brain of rats 14 days after tail vein
injection. Additionally, only a small percentage
(<10%) of transplanted MSCs differentiate and express
neuronal markers such as NeuN and MAP-2.29–32

To further disregard the cell replacement hypothesis,
MSCs lack expression of the voltage-gated ion channels
required for generating action potentials.33 Despite
this, MSC treatment leads to significant improvements
in functional outcomes and can occur independently
of cell migration to the ischaemic brain.28,34 There is
growing evidence to support the paracrine actions of
MSCs, also known as the bystander effect, in improving
outcome in preclinical models of stroke. MSCs secrete a
wide range of chemokines, cytokines, growth factors
and extracellular vesicles (EVs) collectively termed the
secretome.

In this review, we will firstly discuss in vitro
approaches to modifying the MSC secretome to
enhance a more anti-inflammatory and regenerative
phenotype. We will then look at the involvement of
the MSC secretome in promoting repair mechanisms,

modulating inflammation and improving functional
outcomes in preclinical models of cerebral ischaemia.

Approaches to enhancing
the MSC secretome

MSCs secrete numerous growth factors, chemokines
and cytokines including vascular endothelial growth
factor (VEGF), insulin-like growth factor 1 (IGF-1),
basic fibroblast growth factor (bFGF), transforming
growth factor beta-1 (TGF-b1), nerve growth factor
(NGF), placental growth factor (PGF), stromal-derived
growth factor (SDF-1/CXCL12), monocyte chemo-
attractant protein-1 (MCP-1/CCL2), interleukin-6
(IL-6), IL-8, IL-10 and IL-13.35–38 There is some het-
erogeneity in the secretome of different populations of
MSCs. Adipose-derived MSCs were reported to have
higher mRNA expression of VEGF-D, IGF-1 and
IL-8, while dermal sheath and dermal papilla-derived
cells secreted higher concentrations of CCL2 and leptin
than other populations.39 Additionally, Du et al.40

found increased expression levels of HGF (hepatocyte
growth factor), bFGF, IL-6, IL-8, IL-1a and IL-1b in
placenta-derived MSCs and in bone marrow-derived
populations, VEGF-A, NGF and angiogenin were
higher. Thus, MSCs secrete a number of factors that
could promote angiogenesis and neurogenesis, prevent
apoptosis and modulate inflammatory responses.
The MSC secretome therefore has great potential as
a regenerative therapy for stroke and a number of
strategies have been employed to further enhance this
reparative capacity (Figure 1).

Molecular priming

Priming or preconditioning acts as a sub-lethal event
that can trigger an adaptive response to a future injury
or damage. Therefore, administration of ‘‘trained’’ cells
better able to respond to the ischaemic and inflamma-
tory environment post-stroke may further enhance the
efficacy of MSC therapies. MSCs from different sources
(mainly bone marrow, adipose, placenta and umbilical
cord) and from different species (human, equine,
murine) have been preconditioned or primed. Such
in vitro preconditioning strategies can be selective and
aimed at improving the secretion of certain factors such
as anti-inflammatory TNF-a-stimulated gene 6 protein
(TSG-6),41 or to increase survival of MSC once trans-
planted.42 Non-selective approaches aim to modulate
the MSC secretome towards a more desirable pheno-
type by inducing the secretion of immunomodulatory,43

anti-inflammatory44 or pro-angiogenic molecules.45

MSCs are known to be great immune modulators, so
they are often used to decrease inflammatory responses.
To enhance this characteristic, cells can be primed with
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inflammatory mediators such as IL-1,43 TNF-a,41,46,47

IFN-g48,49 or combinations of these.50 In response to
these priming stimuli, MSCs secrete higher concentra-
tions of immunomodulatory mediators including pros-
taglandin E2 (PGE2), IL-6 and granulocyte-colony
stimulating factor (G-CSF)43,51 and upregulate adhe-
sion molecule expression.46,50 This leads to increased
promotion of endogenous repair mechanisms including
angiogenesis46,50 and osteogenesis46 which has been
shown to be beneficial in in vivo models of arthritis,48

joint and cartilage injuries47,50 and bone regeneration.46

It has been reported though, that inflammatory priming
can lead to an increased immunogenicity.50 As this can
be detrimental in future cell therapies, short priming
durations with low doses of pro-inflammatory medi-
ators should be used to limit this undesirable effect.
For example, our lab demonstrated 5min of priming
with IL-1a drove the MSC secretome towards a more
anti-inflammatory phenotype which decreased secre-
tion of TNF-a and IL-6 from inflamed mouse micro-
glia.43 A wide variety of molecules can be used to prime
MSCs and modify their secretome. Indeed, the screen-
ing of libraries has already become a suitable strategy
to detect active molecules.52 As an example, polyinosi-
nic and polycytidylic acid (poly(I:C)) can be used as a
toll-like receptor 3 (TLR3) stimulus to induce an

increased anti-inflammatory phenotype,44 while oxyto-
cin53 or FGF245 have been used to increase the angio-
genic potential of the MSC secretome.

Hypoxia

Another alternative to induce an improved response to
ischemic environments is the use of hypoxic or ischae-
mic preconditioning. This has been shown to induce
increased MSC proliferation and migration,54 upregu-
lation of glucose transporters and adhesion molecule
expression,55 and drive the secretome towards a pro-
angiogenic phenotype.56 More specifically, hypoxic pre-
conditioning of bone marrow-derived MSCs induces
increased secretion of FGF2, VEGF, HGF, TGF-b
and IGF.57,58 This has also been reported in MSCs
derived from other sources including placenta59,60 and
adipose tissue.61 Hypoxic preconditioning can enhance
the therapeutic potential of MSCs in vivo preventing
apoptosis of cardiomyocytes and promoting angiogen-
esis after myocardial infarction62 as well increasing
secretion of VEGF, HGF and FGF in a murine
model of critical limb ischaemia.54 Serum deprivation
is often used in conjunction with hypoxic precondition-
ing as it improves the ability of MSCs to induce angio-
genesis and endothelial proliferation.63,64

Figure 1. Summary of in vitro approaches that have been utilised to enhance the therapeutic potential of mesenchymal stem cell

secretome. BDNF: brain-derived neurotrophic factor; FGF: fibroblast growth factor; G-CSF: granulocyte-colony stimulating factor;

HGF: hepatocyte growth factor; IFN-g: interferon gamma; IGF: insulin-like growth factor; IL: interleukin; MMPs: matrix metallopro-

teinases; NGF: nerve growth factor; PGE2: prostaglandin E2; TGF-b: transforming growth factor beta; TNF-a: tissue necrosis factor

alpha; TSG-6: TNF-a–stimulated gene 6 protein; VEGF: vascular endothelial growth factor.
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3D culture and biomaterials

The 3D culture of MSCs is another option to achieve a
more effective therapy for ischaemic stroke.65–67

Culturing in 3D enhances the angiogenic potential
of MSCs by increasing the secretion of molecules
including VEGF, HGF and FGF2,65,68,69 and increases
anti-inflammatory potential by secreting TSG-6, stan-
niocalcin-1, PGE2 or TGF-b amongst others.65,70,71

This 3D environment provides more physiological con-
ditions, maintains stemness and increases cell survival
and multipotency once transplanted.65,72 Additionally,
this increases the ability of MSCs to activate endogen-
ous mechanisms of tissue repair through increased
secretion of factors such as matrix metalloproteinases
(MMPs) and FGF2.67,73 MSC spheroids have already
shown moderate success in promoting bone regener-
ation74,75 and in inflammatory models such as colitis.76

In some studies, biomaterials including hydrogels,
assembling peptides or scaffolds have been utilised to
further enhance the anti-inflammatory and pro-trophic
phenotype of the MSC secretome. Murphy et al.77

showed that entrapping MSC spheroids in a fibril gel
can increase secretion of VEGF and PGE2, increase
endothelial cell proliferation and promote angiogenesis
in a human 3D skin equivalent wound model. Similarly,
conditioned medium (CM) derived from MSCs
embedded in collagen and polyethylene glycol hydro-
gels induced stronger antioxidant and neuroprotective
responses in SH-SY5Y cells.78 MSCs cultured with self-
assembly peptides induced in vitro outgrowth of axons
and neurites from neurons following traumatic brain
injury.79 Combined administration of MSCs and bio-
materials has been previously shown to promote repair
in a number of disease models. For example, embed-
ding MSCs in platelet lysate hydrogels increased
engraftment as well as increasing the pro-angiogenic
and neo-vascularisation activity of the transplanted
cells in a murine model of critical limb ischaemia.80

CM and serum preconditioning

When the molecule intended to trigger a particular
effect is not known, or when a specific environment
needs to be mimicked, CM or serum is another suitable
option for modifying the MSC secretome. MSCs trea-
ted with endothelial growth medium show improved
viability and endothelial-related functions,81 while
priming MSCs with serum from stroke animals
increased proliferation and secretion of cytokines,
thus improving their therapeutic potential.82 Similarly,
when cultured in rat ischaemic brain extracts, MSCs
respond by increasing secretion of BDNF, VEGF,
NGF and HGF.83 The serum content of growth
medium can have a profound effect on the MSC

secretome. Zimmerman and McDevit71 showed the
secretion of immunomodulatory factors such as
PGE2, IL-6 and TGF-b was far increased when MSC
spheroids were cultured in growth media containing
foetal bovine serum as compared with a specialised
MSC serum-free medium.

Role of the MSC secretome in promoting
repair in preclinical models of stroke

There is a substantial body of evidence demonstrating
MSC transplantation promotes recovery in rodent
models of stroke although the mechanisms of action
have not been fully elucidated. A number of studies
from the early 2000s began to hypothesise that the
MSC secretome was involved. Zhao et al.84 suggested
that as intracranial (IC) administration of hMSCs one
week after middle cerebral artery occlusion (MCAO) in
spontaneously hypertensive (SHR) rats was associated
with improvements in limb placement but differenti-
ation was limited, recovery might be mediated through
secretion of neurotrophic factors from the transplanted
cells. Similarly, IV administration of MSCs also
improved neurological deficits and the authors
proposed neurotrophins from the MSCs decreased
apoptosis and promoted endogenous neurogenesis.28

Later work from the same lab also showed that MSC
transplantation increased angiogenesis in the ischaemic
boundary.85 This was associated with increased
endogenous VEGF and VEGF receptor 2 (VEGFR2)
expression, which the authors hypothesised were upre-
gulated by secretion of growth factors such as bFGF
from the MSCs. In support of this, exogenous IGF-1
from transplanted cells has been detected in the core
and ischaemic border zone three days post-MCAO,
while expression of endogenous growth factors includ-
ing VEGF, EGF and bFGF was increased in MSC-
treated rats compared with controls.86 Additionally,
secretion of a number of other factors from MSCs
engrafted in the ischaemic brain has been detected
including BDNF, bFGF, CXCL12, platelet-derived
growth factor-AA (PDGF-AA) and angiopoietin-2
(Ang-2).87,88

One neurotrophin of particular interest is BDNF
which promotes neuronal survival and differentiation
through interaction with tyrosine kinase receptors.89

In preclinical models of stroke, IV BDNF administra-
tion reduced infarct volume, improved recovery and
promoted neurogenesis.90,91 Furthermore, BDNF
appears to be an important mediator in the MSC
secretome preventing glutamate-induced neuronal
death in vitro.92 When transplanted into a stroke
model, BDNF secretion from MSCs was associated
with increased functional recovery, decreased lesion
volume, decreased apoptosis and increased
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angiogenesis.34 Several studies have shown that over-
expression of BDNF in MSCs further enhanced repair
and recovery.93–95 However, Koh et al.96 demonstrated
that neutralising BDNF did not completely ameliorate
the observed improvements in neurological function
following human umbilical cord-derived MSC trans-
plantation, suggesting other mediators are important
in promoting recovery after stroke.

VEGF has both beneficial and detrimental effects in
the post-stroke brain, as reviewed by Greenberg and
Jin.97 In brief, VEGF increases neuroprotection, angio-
genesis and neurogenesis after focal cerebral ischae-
mia98 but as a potent inducer of vascular
permeability, can also increase blood–brain barrier
(BBB) leakage leading to cerebral oedema.99,100 These
dual actions appear to be reflected in the literature on
the involvement of the MSC secretome in stroke repair.
A number of studies have shown overexpression of
VEGF in MSCs (VEGF-MSCs) enhanced functional
recovery, decreased lesion volume, promoted neurogen-
esis and decreased neuronal apoptosis in rodent models
of cerebral ischaemia.101–103 In contrast, VEGF-MSCs
have also been shown to worsen functional outcomes
and increase oedema, while Ang-VEGF-MSCs led to
improved recovery, decreased lesion volumes and
increased angiogenesis.104 In a cardiac arrest-induced
model of global cerebral ischaemia, overexpression of
both VEGF and BDNF led to decreased apoptosis
and increased motor recovery.103 Overexpression of a
plethora of other cytokines and growth factors including
Ang-1, GDNF, HGF, FGF1 and PIGF were also shown
to enhance recovery after cerebral ischaemia.104–109

Interestingly, MSCs transfected with either neurotrophin
3 (NT3) or ciliary neurotrophic factor (CNTF) did not
significantly improve functional outcomes.110 Thus, it
appears that a combination of mediators are involved
in promoting functional recovery in preclinical models
of ischaemic stroke as summarised in Table 1.

Immunomodulation

While the consensus in the literature is that the MSC
secretome promotes recovery after stroke through
mechanisms including neuroprotection, neurogenesis
and angiogenesis after stroke, its role in immunomodu-
lation is not clear. MSCs exert numerous immunomo-
dulatory effects on immune cell populations including
inhibition of proliferation of natural killer (NK)
cells,111 inhibition of both B and T cell prolifer-
ation112–114 and suppression of dendritic cell (DC) dif-
ferentiation and migration.115,116 Additionally, co-
culture of MSCs drives the secretome of DCs, T cells,
macrophages and NK cells towards anti-inflammatory
phenotypes.117,118 A number of molecules secreted by
MSCs including PGE2, TSG-6, TGF-b, HGF and IL-

10 have been implicated in mediating these immuno-
suppressive effects.119,120 For example, Di Nicola
et al.113 showed TGF-b and HGF secretion was
involved in MSC suppression of T-lymphocyte prolif-
eration.113 Following on from this, TGF-b secretion
from transplanted MSCs improved the systemic inflam-
matory response after stroke decreasing Th17 cells and
increasing regulatory T cells in the peripheral immune
system.121 This was associated with decreased infarct
volume and improved functional recovery.
Furthermore, transplantation of TGF-b silenced
MSCs did not decrease CD68+ cell infiltration or pre-
vent microglial cell death as demonstrated in non-mod-
ified cells.122

IL-10, often referred to as an anti-inflammatory
cytokine, is an inducer of immune tolerance and has
previously been shown to have neuroprotective effects
and decrease pro-inflammatory signalling in preclinical
models of cerebral ischaemia.123,124 Transplantation of
MSCs overexpressing IL-10 led to decreased microglial
activation and pro-inflammatory cytokine (IL-6, TNF-
a and IL-1b) concentrations in the brain after stroke
compared with non-modified MSCs and vehicle.125

Administration of IL-10-MSCs was also neuroprotec-
tive leading to decreased neuronal degeneration and
improved functional recovery. CX3CL1 (fractalkine)
may also have a role in immunomodulation after cere-
bral ischaemia. Its receptor CX3CR1 is expressed by
microglia and CX3CL1-CX3CR1 signalling supresses
neurotoxic microglia activity.126 Secretion of
CXC3CL1 from MSCs has previously been shown to
shift microglia towards a neuroprotective phenotype.127

Sheikh et al.128 suggested CX3CL1 and IL-5 were
involved in decreasing microglial activation and inhibit-
ing expression of pro-inflammatory gene expression,
namely COX-2 and iNOS, in the core and ischaemic
border zone.

TSG-6 secretion from MSCs has previously been
shown to decrease inflammation in peritonitis and cor-
neal injury models.41,129 MSC administration in a car-
diac arrest-induced global cerebral ischaemia rat model
led to decreased serum pro-inflammatory cytokines and
S100B concentrations and decreased expression of neu-
trophil elastase in the cerebral cortex.130 While TSG-6
expression in the cerebral cortex was upregulated, it
was not possible to determine whether this was due to
secretion from the MSCs or endogenous cells.

Secretome modification

As discussed earlier, a number of in vitro strategies
have been utilised to enhance the MSC secretome but
few have investigated whether these lead to enhanced
recovery of function in preclinical models of cerebral
ischaemia. Transplantation of hypoxic preconditioned
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MSCs was superior to normoxic-treated cells leading to
larger improvements in functional recovery, increased
angiogenesis and decreased microglial activation.131

The authors proposed this was mediated by enhanced
secretion of trophic factors and reported upregulated
expression of BDNF, VEGF, GDNF, and CXCL12
in hypoxic cells. Similarly, Zacharek et al.132 demon-
strated that MSCs isolated from rats after MCAO pro-
vided a better allogeneic stroke therapy compared with
cells from naı̈ve animals and was associated with
increased Ang1, bFGF, GDNF and VEGF expression.
The 3D culture of MSCs has also been shown to
enhance recovery. MSCs cultured as spheroids and
then dissociated prior to IA administration led to
improved functional outcomes, increased angiogenesis
and decreased lesion volume.72

MSC CM treatment

In further support of the important role of the MSC
secretome, CM has also been shown to promote

recovery in rodent models of cerebral ischaemia.
Egashira et al.133 reported that adipose-derived hMSC
CM administered by intracerebroventricular (ICV)
injection 1 h prior to MCAO in inbred DDY mice led
to decreased lesion volume and neurological deficits at
24 h post-stroke. Additionally, delayed administration
of CM from spheroid cultured cells beginning at day 8
post-stroke led to decreased microglial apoptosis,
increased endothelial cell proliferation and improved
rotarod performance at day 15.134 IV135 and intrana-
sal136 administration of CM has also been reported to
improve recovery.

MSC-derived EVs

In very recent years, preclinical studies have begun
demonstrating the role of mesenchymal stem cell-
derived EVs in stroke repair (summarised in Table 2).
MSCs secrete a number of EVs including exosomes
which are characteristically 30–100 nm in diameter
and contain micro RNAs, messenger RNAs and

Figure 2. The role of the mesenchymal stem cell secretome in promoting repair and recovery after ischaemic stroke. The main

mechanisms of action are highlighted along with the proposed mediators. Ang: angiopoietin; BDNF: brain-derived neurotrophic factor;

CXCL: chemokine C-X-C motif ligand; CX3CR1: CX3C chemokine receptor 1; bFGF: basic fibroblast growth factor; GDNF: glial cell

line-derived neurotrophic factor; HGF: hepatocyte growth factor; HIF-1a: Hypoxia-inducible factor 1-alpha; IGF-1: insulin-like growth

factor 1; IL: interleukin; PDGF-AA: platelet-derived growth factor AA; PGF: placental growth factor; TGF-b: transforming growth

factor beta: VEGF: vascular endothelial growth factor.
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proteins.137 Microvesicles (MVs), also known as shed-
ding vesicles, ectosomes or microparticles, ranging
from 60 nm to 1 mm in diameter are also secreted.138

Systemic administration of EVs derived from MSCs
has been shown to promote functional recovery in
rodent models of cerebral ischaemia and this was asso-
ciated with mechanisms including neuroprotection,
white matter repair, neurogenesis and angiogen-
esis.139–142 In a transient global ischaemia model, exo-
some therapy also ameliorated impairments in memory
and hippocampal synaptic transmission.143

Furthermore, MSC-derived exosomes have been
shown to be equally effective as MSCs in improving
functional outcomes, further supporting the import-
ance of the secretome in promoting stroke repair.140

Lee et al.141 showed that MVs derived from MSCs pre-
conditioned with either normal or ischaemic brain
extracts further enhanced recovery compared with
MVs from untreated cells. There are a limited number
of studies postulating on the role of specific EVs in
stroke repair. Overexpression of miR-133b144,145 and
miR-17-92 cluster146 was associated with increased
functional recovery and repair. In a diabetic mouse
model, miR-126 was shown to promote functional
recovery, angiogenesis, white matter remodelling and
decrease BBB permeability.147

Conclusions and future directions

There is a growing body of evidence demonstrating the
role of the MSC secretome in promoting recovery in
rodent models of cerebral ischaemia. This has been
proposed to occur through a number of mechanisms
including decreased neuroinflammation, neuroprotec-
tion, increased angiogenesis and neurogenesis
(Figure 2). However, there is currently no consensus
in the literature on what mediators in the MSC secre-
tome are important in promoting repair and functional
recovery after stroke. While a strong case can be made
for BDNF in particular with multiple citations support-
ing its role, neutralising BDNF did not completely
abolish post-stroke recovery. It is therefore likely that
a combination of mediators is important in promoting
recovery and repair after stroke. In support of this,
meta-analysis has demonstrated that G-CSF does not
improve outcomes in stroke patients.148 A number of
in vitro strategies have been used to drive the secretome
towards a more desirable anti-inflammatory and
pro-trophic phenotype including priming with pro-
inflammatory cytokines, hypoxic preconditioning,
biomaterials and 3D culture (Figure 1). However, the
efficacy of these approaches has not been extensively
assessed in preclinical models.

There are several challenges to be overcome in trans-
lating the MSC secretome into a safe and effective

therapy for ischaemic stroke such as the optimal
timing of administration. The majority of preclinical
studies elected to administer MSCs, CM and exosomes
during the acute phase of stroke (� 48 h) where second-
ary damage is mediated by reactive oxygen species,
migration of immune cells to the ischaemic brain and
production of pro-inflammatory cytokines such as
IL-1.149 As a number of studies have demonstrated
immunomodulatory and neuroprotective effects of the
MSC secretome, such a time point may hold thera-
peutic potential. In contrast, one study reported that
administration of MSCs to rats at 1 month post-
stroke also led to functional recovery. This was
associated with decreased glial scarring and increased
proliferating cells in the subventricular zone, suggesting
MSC treatment may have promoted neurogenesis.150

As MSCs secrete multiple growth factors which can
activate endogenous repair mechanisms, administration
at delayed time points should be investigated further.151

Determining the optimal timing of administration may
prove to be a difficult balancing act and repeated dosing
should be considered. For example, VEGF induces vas-
cular permeability so if administered at acute time
points may increase BBB breakdown leading to
increased cerebral oedema and exacerbate injury.
Another challenge will be determining the best therapy.
While MSCs are generally immune evasive and have
been shown to be well tolerated in clinical trials in
stroke, the increasing number of preclinical studies
demonstrating the efficacy of MSC-derived CM and
EVs could mitigate the need to administer cells. This
may prove more translatable as these cell-free alterna-
tives can be cryopreserved without any concerns over
cell viability so could be stored for long periods of time
and shipped worldwide. Another challenge will be
determining the route of administration. Preclinical stu-
dies and clinical trials have employed both systemic
routes such as IV and IV and direct routes such as
IC. As improvements in recovery can occur independ-
ently of MSC engraftment or even migration to the
ischaemic brain, perhaps systemic routes which are sim-
pler, less invasive and less likely to cause adverse events
should be adopted.

Looking forward, the biggest challenge to preclinical
scientists is that there is currently no clear consensus on
the optimum culture conditions and preconditioning
strategy to maximise the regenerative potential of the
MSC secretome. Future work should focus on assessing
the efficacy of more approaches to modifying secretome
in rodent models of cerebral ischaemia and increasing
our understanding of the mediators involved in pro-
moting repair. There is growing interest in cell-free
approaches such as exosomes or CM and these
should also be more fully investigated. In summary,
while there are a number of hurdles to overcome on
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road to translation, the MSC secretome holds much
potential as a regenerative therapy for ischaemic stroke.
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